
Lie symmetries of nonlinear multidimensional reaction–diffusion systems: II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 405

(http://iopscience.iop.org/0305-4470/36/2/309)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 405–425 PII: S0305-4470(03)39291-1

Lie symmetries of nonlinear multidimensional
reaction–diffusion systems: II

Roman Cherniha1 and John R King2

1 Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Street 3,
Kyiv 01601, Ukraine
2 Division of Theoretical Mechanics, Nottingham University, University Park,
Nottingham NG7 2RD, UK

E-mail: cherniha@imath.kiev.ua and john.king@nottingham.ac.uk

Received 10 July 2002, in final form 31 October 2002
Published 17 December 2002
Online at stacks.iop.org/JPhysA/36/405

Abstract
We present a complete description of the classical (Lie) symmetries of a coupled
system of partial differential equations comprising a pair of semilinear reaction–
diffusion equations with constant diffusivities and arbitrary nonlinearities in the
reaction terms, in any number of spatial dimensions. Part I (Cherniha R M and
King J R 2000 J. Phys. A: Math. Gen. 33 267–82, 7839–41) addressed the case
of unequal diffusivities; here we complete the analysis by treating the case of
equal diffusivities in which the symmetry structure is richer still. Such models
arise in the description of numerous physical, chemical and biological systems
and we also indicate the possible application in such contexts of some of the
specific cases arising from the group classification. Specifically, a variety of
Lie’s ansätze and exact solutions of the so-called λ − ω reaction–diffusion
systems, of a type that arises in mathematical biology, are constructed.

PACS numbers: 02.20.−a, 02.30.Jr, 05.45.−a

1. Introduction

This paper, which concludes the analysis commenced in [1], is devoted to consideration of
nonlinear reaction–diffusion systems of the form{

λ1Ut = �U + F(U, V )

λ2Vt = �V + G(U,V )
(1)

in the case λ1 = λ2 �= 0. Without losing generality, we can set λ1 = 1, so we consider{
Ut = �U + F(U, V )

Vt = �V + G(U,V ).
(2)
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Here F and G are arbitrary smooth functions, U = U(t, x), V = V (t, x) are unknown
functions of n + 1 variables t, x = (x1, . . . , xn),� is the Laplacian, and the t subscript to the
functions U and V denotes differentiation with respect to this variable.

In section 2, the classical Lie scheme is applied to find all possible Lie symmetries which
the system (2) can admit. The main results of this section are presented in tables 1–4. In
particular, it is established that, among the class (1), the special case (2) is highly non-generic
from the algebraic-theoretical point of view. Thus, in contrast to systems of the form (1) with
λ1 �= λ2, there are many pairs of nonlinearities (F,G) leading to entirely new types of Lie
symmetries in the case λ1 = λ2.

In section 3, (1 + 1)-dimensional λ − ω reaction–diffusion systems (see [2], for example,
for background) of the form{

Ut = �U + ρα0(β1U − β2V ) + β10U − β20V

Vt = �V + ρα0(β2U + β1V ) + β20U + β10V
(3)

are considered. Here α0, βk, βk0, k = 1, 2, are real parameters and ρ2 = U 2 + V 2. This
system with α0 = 2 has been widely studied using qualitative and numerical methods (see,
for example, [3], [4] and [2], chapter 12). The results of section 2 establish that this system
admits a non-trivial Lie symmetry when β10 = 0. All nonequivalent Lie ansätze are presented,
together with formulae for the generation of new solutions from existing ones and examples
of exact solutions.

Finally, in section 4 discussion of the results obtained here and in [1] is presented.

2. Lie symmetries of system (2)

Hereinafter the invariance algebra AE(1.n) generated by the operators Pa, Jab and Pt (defined
in [1]) is again called the trivial Lie algebra of the systems under consideration. Thus, we
aim to find all pairs of functions (F,G) that lead to extensions of the trivial Lie algebra of the
nonlinear system (2).

It should be stressed that for many reaction–diffusion (RD) systems of the form (2), the
relevant Lie algebras can be obtained from those for λ1 �= λ2 �= 0 (see tables 1, 3–6 in [1])
by formally setting λ1 = λ2 = 1. However, we also have the following: (a) cases 3, 4 and 9,
table 1, case 15, table 3, case 9, table 5 and case 9, table 6 of [1] have to be considered
separately for λ1 = λ2 = 1 because the relevant nonlinearities and symmetry operators
contain the factors (λ1 − λ2)

−1 and/or λ1 − λ2; (b) there are several systems arising in tables
1–6 of [1] which admit additional operators of Lie symmetry when λ1 = λ2 = 1 and such
systems therefore need to be listed again here.

Now we remind the reader that the most general form of the infinitesimal operator

X = ξ0(t, x, U, V )∂t + ξa(t, x, U, V )∂xa
+ ηU(t, x,U, V )∂U + ηV (t, x,U, V )∂V (4)

generating Lie symmetries of the system (2) is given by the following coefficients [1]:


ξ0 = 2A(t)

ξa = cabxb + Ȧ(t)xa + ga(t) a, b = 1, . . . , n a �= b

ηU = − 1
2

(
1
2 |x|2Ä(t) + ġa(t)xa

)
U + r1(t)U + q1(t)V + P 1(t, x)

ηV = − 1
2

(
1
2 |x|2Ä(t) + ġa(t)xa

)
V + r2(t)V + q2(t)U + P 2(t, x)

(5)

where A(t), ga(t), a = 1, . . . , n, rk(t), qk(t), P k(t, x), k = 1, 2 are smooth functions that
need to be determined, cab + cba = 0, cab ∈ R, and the dots over the functions denote
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differentiation with respect to the variable t. Simultaneously, these coefficients must satisfy
the so-called classification equations


∂ηU

∂t
− �ηU + F

(
∂ηU

∂U
− ∂ξ 0

∂t

)
+ G

∂ηU

∂V
= ηU ∂F

∂U
+ ηV ∂F

∂V

∂ηV

∂t
− �ηV + G

(
∂ηV

∂V
− ∂ξ 0

∂t

)
+ F ∂ηV

∂U
= ηU ∂G

∂U
+ ηV ∂G

∂V
.

(6)

To find all pairs of (F,G) for which the system (2) has a non-trivial Lie symmetry, we have to
construct all non-equivalent solutions of the classification equations (6). It should be stressed
that this is a highly non-trivial problem because (6) are not linear partial differential equations
(PDEs) with respect to the U and V in the usual sense, but PDEs with several additional
unknown functions A(t), ga(t), a = 1 . . . n, rk(t), qk(t), P k(t, x), k = 1, 2 that play the role
of parameters and have to be determined. Only the cases (ii) q1(t) = 0, q2(t) �= 0 and
(iii) q1(t)q2(t) �= 0 need to be considered because the case q1(t) �= 0, q2(t) = 0 is equivalent
to the case (ii) and the results for the case (i) q1(t) = q2(t) = 0 turn out to follow formally
from those in [1] in the manner noted above.

Note that we have listed only locally non-equivalent systems with respect to the relevant
local substitutions, having the form{

U → c11U + (c12 + c1t)V + c3 exp(c13t)U + c5t + c10

V → (c21 + c2t)U + c22V + c4 exp(c23t)V + c6t + c20
(7)

where the coefficients c with subscripts are determined by the form of the system in question
(see section 4 for further discussion). One can see that the set of substitutions (7) is much
wider than in the case λ1 �= λ2 �= 0 (see (19) in [1]) because formula (7) contains the terms
(c12 + c1t)V and (c21 + c3t)U. It should be stressed that the set of substitutions (7) contains
the so-called equivalence transformations (in the sense of [5], subsection 2.6) of (2) as a
particular case for c1 = c2 = · · · = c6. We construct this set of substitutions instead of
equivalence transformations because it gives a much wider range of possibilities for reduction
of the number of RD systems (2) with the same Lie symmetry (see examples in section 4).

Now let us state a theorem which gives complete information on the classical symmetries
of the system (2) under the additional condition that the system contains at least one operator
(4) and (5) with q2(t) �= 0.

Theorem 1. All possible maximal algebras of invariance (MAI) of the nonlinear system (2)
for any fixed pair of functions (F,G) are presented in tables 1–4. Any other system of the
form (2) with non-trivial Lie symmetry can be reduced by a local substitution of the form (7)
to one of those given in the tables.

Sketch of the proof of theorem 1. The proof is similar to that given in [1], so we present
only the main steps here.

Taking into account (5), one sees that the most non-trivial symmetry can occur when

E ≡ 1
2 |x|2Ä(t) + ġa(t)xa �= 0. (8)

Substituting coefficients (5) into (6) and solving the system obtained using the restriction (8),
it can be established that the most general forms of such systems coincide with those presented
in [1] (see table 1, cases 1 and 6, with λ1 = λ2 = 1) and contain arbitrary smooth functions
f (V/U) and g(V/U). In other words, we obtain either Galilei-invariant systems or pseudo-
Galilean-invariant systems with the same representation. However, finding all systems with
possible extensions of these two invariance algebras, we arrive at several new RD systems of
the form (2) with Lie symmetries which do not occur in the case λ1 �= λ2 �= 0. These systems
and the corresponding Lie symmetries are listed in table 1.
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Table 1. Galilei-invariant and pseudo-Galilean-invariant systems of the form (2).

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

1 β1V β2 �= β1 AE(1.n), Q = U∂U + V ∂V

Ga = tPa − xa
2 Q, a = 1, . . . , n

D02 = D00 − 2V ∂V

β2
V 2

U

 = tD02 − t2∂t − 1

4 |x|2Q
−t

(
n
2 + β1

β2−β1

)
Q + 1

β1−β2
U∂V

2 β1V β1 �= 0 AE(1.n), Q,Ga, a = 1, . . . , n

β1
V 2

U
D02, Y

1
βt = β1tQ + U∂V

3 β1V β1β21 �= 0 AE(1.n), Q,Ga, a = 1, . . . , n, Y 1
βt

β1
V 2

U
+ β21U

4 β1V β1α0 �= 0 Q,Ga, a = 1, . . . , n,

β1
V 2

U
+ β21U + α0V Q1

α0
= exp(α0t)(β1Q + α0U∂V )

5 β10U + β1V + β0U log U β0β1 �= 0 AE(1.n),Qβ0 = exp(β0t)Q

β10V + β21U + β1
V 2

U
+ β0V log U Ga = exp(β0t)

(
∂a − β0

2 xaQ
)

a = 1, . . . , n,Q1
γ atγ = − β1

β0

6 β10U + β1V + β0U log U β0β1 �= 0 AE(1.n),Qβ0 ,Ga, a = 1, . . . , n

β20V + β21U + β1
V 2

U
+ β0V log U β20 − β10 = β0 Y1

βt = exp(β0t)Y
1
βt

7 β10U + β1V + β0U log U β0β1 �= 0 AE(1.n),Qβ0 ,Ga, a = 1, . . . , n

β20V + β21U + β1
V 2

U
+ β0V log U β20 − β10 �= β0 exp[(β20 − β10)t]×

β20 �= β10 [β1Q + (β20 − β10 − β0)U∂V ]

8 β10U + β0U log U β0 �= 0 AE(1.n), Q1
0

β10V + β21U + β0V log U Qβ0 ,Ga, a = 1, . . . , n

R1
βt with β = β21

9 β10U + β0U log U β0 �= 0 AE(1.n),Q1
0 with α = β20 − β10

β20V + β21U + β0V log U β10 �= β20 Qβ0 ,Ga, a = 1, . . . , n(
V + β21

β20−β10
U

)
∂V

10 β1U exp
(−γ0

V
U

)
AE(1.n), Q = U∂U + V ∂V

(β2U + β1V ) exp
(−γ0

V
U

)
γ0 �= 0 Ga = tPa − xa

2 Q, a = 1, . . . , n

D1
γ0

= D00 + 2
γ0

U∂V

11 exp(−γ0W)(β1U + β2V ) γ0 �= 0 AE(1.n), Q

W = tan−1
(

V
U

)
Ga, a = 1, . . . , n

exp(−γ0W)(β1V − β2U) D12
γ0

= D00 + 2
γ0

(U∂V − V ∂U )

12 γ1UW + β10U + β20V γ1 �= 0 AE(1.n), Q,Ga, a = 1, . . . , n

W = tan−1
(

V
U

)
Y 12 = γ1tQ + (U∂V − V ∂U )

γ1V W + β10V − β20U

13 (γ1U + γ2V )W + γ2 �= 0 AE(1.n), Q,Ga, a = 1, . . . , n

β10U + β20V Q12
γ2

= exp(−γ2t)[γ1Q

(γ1V − γ2U)W + W = tan−1
(

V
U

) −γ2(U∂V − V ∂U )]
β10V − β20U

14 β0U log ρ + γ1UW + β0 �= 0 AE(1.n),Qβ0

β10U + β20V Ga, a = 1, . . . , n

β0V log ρ + γ1V W + ρ2 = U2 + V 2 Q12
γ1β0

= γ1Q + β0(U∂V − V ∂U )

β10V − β20U W = tan−1
(

V
U

)
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Table 1. (Continued.)

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

15 β0U log ρ + (γ1U + γ2V )W + β0 �= 0 AE(1.n),Qβ0 ,Ga, a = 1, . . . , n

β10U + β20V β0 �= −γ2

β0V log ρ + (γ1V − γ2U)W + ρ2 = U2 + V 2 Q12
γ2β0

= exp(−γ2t)[γ1Q −
β10V − β20U W = tan−1

(
V
U

)
(β0 + γ2)(U∂V − V ∂U )]

16 β0U log ρ + (γ1U + γ2V )W + β0 �= 0 AE(1.n),Qβ0 ,Ga, a = 1, . . . , n

β10U + β20V β0 = −γ2 Y12 = exp(β0t)[γ1tQ +
β0V log ρ + (γ1V − γ2U)W + ρ2 = U2 + V 2 (U∂V − V ∂U )]
β10V − β20U W = tan−1

(
V
U

)

Let us clarify how all possible extensions of the Lie symmetry of the Galilei-invariant
system {

Ut = �U + Uf (ω)

Vt = �V + Vg(ω) ω = V/U
(9)

were obtained (see nos 1–4 and 10–13 in table 1). Substituting coefficients (5) and the functions
F = Uf,G = Vg into (6), we obtain two expressions which form an ODE system for the
functions f (ω) and g(ω) depending on the variable ω and the functions A, rk, qk, P k, k = 1, 2
depending on the variable t (the system is omitted here because of its awkwardness). Since
system (9) is invariant under the Galilei algebra, the two expressions obtained are identically
satisfied by the coefficients (5) for

A = d0 ga = ga0t + da a = 1, 2, . . . , n
(10)

rk = r0 qk = Pk = 0 k = 1, 2

(hereafter d0, r0, da, ga0, a = 1, 2, . . . , n are arbitrary parameters corresponding to the
operators Pt ,Q,Pa,Ga, a = 1, 2, . . . , n, respectively). To find all possible systems with
a wider Lie symmetry, we have to obtain the solutions to the two expressions which involve a
more general form of functions A, ga, a = 1, 2, . . . , n, rk, qk, P k, k = 1, 2 than (10). In the
general case we can split them into separate parts for the terms in |x|2 and xa, a = 1, 2, . . . , n

(see ηU , ηV in (5)); we thus find the most general forms of the functions to be

A(t) = 1
2et2 + A1t + d0 ga = ga0t + da a = 1, 2, . . . , n

(11)
Pk(t, x) = pk(t) k = 1, 2

where e and A1 are arbitrary parameters, p1(t) and p2(t) are arbitrary smooth functions.
Simultaneously, we obtain the system of equations



ṙ1 + q̇1ω + ne
2 + 1

U
ṗ1 + (r1 − (2et + 2A1))f + q1ωg

= (
r1 + q1ω + 1

U
p1

)
(f − ωfω) +

(
r2ω + q2 + 1

U
p2

)
fω

ṙ2 + q̇2

ω
+ ne

2 + 1
V

ṗ2 + (r2 − (2et + 2A1))g + q2

ω
f

=
(
r2 + q2

ω
+ 1

V
p2

)
(g + ωgω) − (

r1ω + q1ω2 + 1
V

p1ω2
)
gω.

(12)

Since the unknown functions f (ω) and g(ω) do not depend separately on U and V , one
can again split the system (12) into separate parts, for 1

U
and 1

V
, and obtain the following

systems of ODEs{
(p2 − ωp1)fω + p1f = ṗ1

(p2 − ωp1)ωgω + p2g = ṗ2 (13)
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

(q2 − q1ω2 + (r2 − r1)ω)fω + (2et + 2A1 + q1ω)f − q1ωg = ṙ1 + q̇1ω + ne
2

(q2 − q1ω2 + (r2 − r1)ω)gω +
(

2et + 2A1 + q2

ω

)
g − q2

ω
f = ṙ2 + q̇2

ω
+ ne

2

(14)

for the functions f (ω), g(ω) and rk(t), qk(t), pk(t), k = 1, 2.

It can be seen that system (13) is identically satisfied by p1 = p2 = 0. On the other hand,
solving the subsystem in the case p1 �= 0 or p2 �= 0, we arrive at the functions

f = α10 + α11ω g = α20 + α22ω
−1 (15)

where αk0, αkk, k = 1, 2 are constants. Obviously, substituting (15) into (9) will result in a
linear RD system. So, we must put p1 = p2 = 0 and then only system (14) needs to be
solved. In a natural way the three distinct cases mentioned above appear: (i) q1 = q2 = 0; (ii)
q1 = 0, q2 �= 0; (iii) q1q2 �= 0. In case (i), system (14) is not coupled, therefore its solution
is quite similar to that for the general case λ1 �= λ2, λ1λ2 �= 0 [1]. The relevant computations
were done for λ1 = λ2 = 1 and the systems and the relevant MAI (see cases 1, 2, 4 and 5 in
table 1 of [1]) were found thereby. We have established that the operator Y (see case 4) takes
a distinct form, namely Y = U∂U − V ∂V − 2β0t (U∂U + V ∂V ).

Consider now the second case. Since q1 = 0, the first equation of the system (14) can be
separately integrated and one finds

f (ω) =
{

ṙ1

q2 ω + c0 e = A1 = 0

β1 exp
(−2 et+A1

q2 ω
)

+ ṙ1+ne/2
2(et+A1)

et + A1 �= 0
(16)

if r1 = r2, and

f (ω) =
{

ṙ1

r2−r1 log
∣∣ω + q2

r2−r1

∣∣ + c0 e = A1 = 0

β1
(
ω + q2

r2−r1

)−d
+ ṙ1+ne/2

2(et+A1)
d = 2(et+A1)

r2−r1 �= 0
(17)

if r1 �= r2 (hereafter c0, β1, 0 �= d are arbitrary constants).
It can be observed that the system (9) with an arbitrary function with a constant term, i.e.

f (ω) = f0(ω) + c0, is reduced to the same one with c0 = 0 using the local substitution

U → exp(c0t)U V → exp(c0t)V . (18)

So, without losing generality, we will assume that c0 or its analogues vanish in (16) and (17).
Taking into account the substitution noted above, we obtain f = β1ω, β1 = ṙ1

q2 �= 0 (see
(16) for e = A1 = 0). A special case β1 = 0 leads to a linear RD system so that we do
not consider it. Substituting the function f into the second equation of (14), we arrive at the
equation

gω +
1

ω
g = 2β1 +

r̈1

ṙ1

1

ω
. (19)

Since the left-hand side of (19) does not depend on the variable t, there are only the following
two possibilities

r1 =
{
r0 exp(α0t) + r00 α0 �= 0
r0t + r00 α0 = 0

(20)

for the function r1(t) in the right-hand side of (19). Having (20), one finds the general solution
of (19) in the form

g = β1ω + β21ω
−1 + α0 (21)

(in formulae (19) and (21) r0, r00, α0, β1, β21 are arbitrary constants).
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Substituting the found functions f and g into the RD system (9) and r1 = r2, q1 = 0,

q2 = ṙ1

β1
into (4) and (5), the systems and the relevant MAI listed in cases 3 and 4, table 1, are

obtained.
Considering (16) for et + A1 �= 0, one obtains

f (ω) = β1 exp(−γ0ω)
et + A1

q2
= γ0 �= 0 ṙ1 + ne/2 = 0. (22)

Substituting the function f from (22) into the second equation of (14), we arrive at the equation

gω +

(
γ0 +

1

ω

)
g = β1

ω
exp(−γ0ω) +

e

(et + A1)ω
. (23)

The left-hand side of (19) again does not depend on the variable t, therefore the restriction
e = 0 springs up which leads immediately to r1 = r2 = r0, q

2 = 2A1/γ0. We can now easily
solve the equation and find the function

g(ω) = exp(−γ0ω)

(
β1 +

β2

ω

)
(24)

where r0, γ0, A1, β1, β2 are arbitrary constants. Substituting the found functions f and g into
the RD system (9) and rk, qk, k = 1, 2 into (4) and (5), the system and the relevant MAI listed
in case 10, table 1, are obtained.

Similarly, the formula (17) for e = A1 = 0 has been analysed and the functions

f (ω) = β1 log(ω + γ )
(25)

g(ω) =
(

β2 +
γ (β2 − β1)

ω

)
log(ω + γ ) +

γβ0

ω
+ β0

in which γ �= 0, β0, β1, β2 are arbitrary constants, and the relevant operators of MAI were
found. However, the RD system (9) with the nonlinearities (25) and the relevant MAI are
reduced by the substitution

U → U V → V − γU (26)

to the systems and MAI listed in cases 4 or 5, table 1 of [1]
(at λ1 = λ2 = 1) that have been found above in the case (i).

Finally consider (17) at et + A1 �= 0. It should be stressed that the case d = −1 is special
because it leads to the linear function

f (ω) = β1ω +
β1q

2

r2 − r1
+

ṙ1 + ne/2

2(et + A1)
. (27)

Again we can suppress the constant term in (27) and, taking into account the expression for
d = −1 in (17), therefore we find

f (ω) = β1ω β1q
2 = ṙ1 + ne/2 r2 − r1 = −2(et + A1). (28)

Having (28), the second equation of (14) can be reduced to the form

gω +
γ − ω

ω(γ + ω)
g = 2β1γ − 2e(r2 − r1)

−1

γ + ω
+

q̇2(r2 − r1)
−1

ω(γ + ω)
(29)

where γ = γ (t) = q2(r2 − r1)−1. This is a linear first-order ODE with respect to the function
g(ω) and its general solution can be easily constructed:

g(ω) = β2ω +
e + q2(β2 − β1)

r2 − r1

(
2 +

γ

ω

)
− q̇2

(r2 − r1)ω
. (30)
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Since the left-hand side of (30) does not depend on the variable t, the expression on the
right-hand side must be a function of the variable ω but not of t. It is convenient to consider
two cases:

e + q2(β2 − β1) = 0 (31)

and

e + q2(β2 − β1) �= 0. (32)

Analysis of the first of them leads to the function g(ω) = β2ω. Simultaneously, the following
functions are obtained:

q2 = e

β1 − β2
r1 =

(
β1

β1 − β2
− n

2

)
et + r0 r2 = r1 − 2(et + A1) (33)

if β1 �= β2, and

q2 = q0 r1 = β1q0t + r0 r2 = r1 − 2A1 A(t) = A1t + d0 (34)

if β1 = β2.
Thus, substituting the found functions f and g into the RD system (9) and expressions

(33) and (34) into (4) and (5), the systems and the relevant MAI listed in cases 1 and 2,
table 1, respectively, are obtained.

Analysis of the second case (see condition (32)) leads to the function

g(ω) = β2ω + 2β0 +
β2

0

(β2 − β1)ω
(35)

and the relevant expressions for the functions rk and qk, k = 1, 2. It turns out that the RD
system (9) with the reaction terms (28) and (35) and the relevant MAI are reduced to the same
as those for β0 = 0, therefore the system and the MAI listed in case 1, table 1, are again
obtained. One can easily check this by applying first the substitution (26) for γ = β0

β2−β1
and

then (18) for c0 = β0β1

β1−β2
. So, condition (32) leads to the RD system and Lie symmetry that

are locally equivalent to those found earlier.
To complete the examination of case (ii), formula (17) with et + A1 �= 0 and d �= −1

should be analysed. After similar computations we obtain

f (ω) = β1(ω + γ )−d (36)

γ = q2(r2 − r1)−1 ṙ1 + ne/2 = 0 d(r2 − r1) = 2(et + A1) (37)

instead of (28). Taking into account formulae (36) and (37), the second equation of (14) can
be reduced to the form

(γ + ω)gω +
γ + dω

ω
g = β1γ

ω(γ + ω)d
+

q̇2(r2 − r1)−1

ω
+

ṙ2 + ne/2

r2 − r1
. (38)

In contrast to (29), γ is a constant in (36)–(38) so the condition e = 0 and the functions

q2 = 2γA1

d
r1 = r0 r2 = r1 +

2A1

d
A(t) = A1t + d0 (39)

are obtained. Substituting (39) into (38), we find its general solution:

g(ω) = γ (β2 − β1) + β2ω

ω(γ + ω)d
. (40)

However, the RD system (9) with the nonlinearities (36) and (40) and the relevant MAI
are reduced by substitution (26) to the system and MAI listed in case 2, table 1 of [1] (at
λ1 = λ2 = 1) that have already been found in the case (i).



Lie symmetries of nonlinear multidimensional reaction–diffusion systems: II 413

The investigation of case (ii) is now completed. Note that substitutions (18) and (26)
belonging to the set (7) were simultaneously found.

In complete analogy with case (ii), we have analysed the last case, (iii), and found the
systems and MAI listed in cases 11–13, table 1. Simultaneously the relevant local substitutions
of the form (7) were found.

If the restriction (8) does not apply, i.e. if E = 0, then (5) takes the form


ξ0 = 2A1t + d0

ξa = cabxb + A1xa + da a, b = 1, . . . , n a �= b

ηU = r1(t)U + q1(t)V + P 1(t, x)

ηV = r2(t)V + q2(t)U + P 2(t, x)

(41)

where A1, d0, d1, . . . , dn are arbitrary parameters. In this case it can be shown that

Pk(t, x) = pk(t) k = 1, 2 (42)

holds for any system of the form (2), except for the system{
Ut = �U + f (U)

Vt = �V + βV + g(U)
(43)

where f and g are arbitrary functions and β ∈ R. Of course, using the set (7) of local
substitutions, this system can be rewritten in other forms but we do not give all the locally
equivalent systems only write one of them.

System (43) is invariant with respect to the additional Lie symmetry operator X∞
β =

Pβ(t, x)∂V or X∞
0 = P0(t, x)∂V (the functions Pβ(t, x) and P0(t, x) are specified in remark 1

below). All possible pairs of functions (f, g) leading to extensions to the Lie symmetry of
(43) have been found (see cases 4, 7, 8, 10, 16–18, 20–26 in table 3, and cases 14–24 in
table 4).

Consider the general case, i.e. when (2) does not coincide with (43). Substituting (41)
and (42) into the classification equations (6) we arrive at


ṙ1(t)U + q̇1(t)V + ṗ1(t) + F(r1(t) − 2A1) + Gq1(t)

= (r1(t)U + q1(t)V + p1(t)) ∂F
∂U

+ (r2(t)V + q2(t)U + p2(t)) ∂F
∂V

ṙ2(t)V + q̇2(t)U + ṗ2(t) + G(r2(t) − 2A1) + Fq2(t)

= (r1(t)U + q1(t)V + p1(t)) ∂G
∂U

+ (r2(t)V + q2(t)U + p2(t)) ∂G
∂V

.

(44)

To find all pairs of (F,G) for which the system (2) (with structures other than those already
found) has a non-trivial Lie symmetry, we have to construct all non-equivalent solutions of the
linear system (44), which is much simpler than the system (6) with coefficients (5) because it
contains as parameters the functions rk(t), qk(t), pk(t), depending only on one variable.

Consider case (iii), q1(t)q2(t) �= 0. It turns out that the system (44) has non-vanishing
solutions leading to non-trivial Lie symmetries only in the case r1(t) = r2(t), q1(t) +
q2(t) = 0. Taking into account this fact, system (44) has been solved using the ‘polar’
coordinates ρ2 = U 2 + V 2,W = tan−1(V /U). All possible pairs of (F,G) and the relevant
coefficients rk(t), qk(t), pk(t), k = 1, 2 have been found and the results are summarized in
table 2.

In case (ii), q1(t) = 0, q2(t) �= 0, the first equation of system (44) contains no function
G and can be solved independently from the second, so the technique from [1] can be used
to find F and the relevant coefficients q2(t), rk(t), pk(t), k = 1, 2. Having obtained a list
of these functions, the corresponding functions G are found from the second equation. The
results are summarized in tables 3 and 4.

The sketch of the proof is now completed.
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Table 2. Case (i) q1(t)q2(t) �= 0.

Sl no Nonlinearities (F, G) Restrictions Basic operators of MAI

1 exp(−γ0W)(Uf (ω) + Vg(ω)) γ0 �= 0 AE(1.n), D12
γ0

= D00 + 2
γ0

×
ω = ρ exp(−γW) (γU∂U + γV ∂V +

exp(−γ0W)(Vf (ω) − Ug(ω)) ρ2 = U2 + V 2 U∂V − V ∂U )

W = tan−1
(

V
U

)
2 Uf (ω) + Vg(ω) ω = ρ exp(−γW) AE(1.n)

Vf (ω) − Ug(ω) ρ,W—see above Q12
γ = γQ + U∂V − V ∂U

3 Uf (ω) + Vg(ω)+ α �= 0 AE(1.n)

αW(γU − V ) ω = ρ exp(−γW)

Vf (ω) − Ug(ω) + ρ,W—see above Q12
γ = exp(αt)Q12

γ

αW(γV + U)

4 ρα0 exp(−γα0W)(β1U + β2V ) α0 �= 0 AE(1.n), Q12
γ

ρα0 exp(−γα0W)(β1V − β2U) Dα0 = D00 − 2
α0

(U∂U + V ∂V )

5 ρα0 exp(−γα0W)(β1U + β2V ) + α0β20 �= 0 AE(1.n), Q12
γ

β10U + β20V β10 = −β20γ D12
γ = Dα0 − 2β20tQ

12
γ

ρα0 exp(−γα0W)(β1V − β2U) +
β10V − β20U

6 (β1U + β2V ) log ρ + (γ1U + γ2V )W + β2 �= 0 AE(1.n)

β10U + β20V Y 12
k = rk(t)Q +

(β1V − β2U) log ρ + (γ1V − γ2U)W + qk(t)(U∂V − V ∂U )

β10V − β20U

Remark 1. In tables 2–4, f (ω), g(ω) are arbitrary smooth functions, D00 ≡ 2t∂t + xa∂a, and
P0(t, x) and Pβ(t, x) are arbitrary solutions of the linear heat equations

Pt = �P (45)

and

Pt = �P + βP (46)

the functions rk(t), qk(t), k = 1, 2 form a fundamental system of solutions of the linear ODE
systems (table 2, case 6)

dr

dt
= β1r + γ1q

dq

dt
= −β2r − γ2q (47)

and (table 3, case 11)

dr

dt
= β0r + β1q

dq

dt
= −γ r + (β20 − β10)q. (48)

Remark 2. Taking into account the nonlinearities listed above in tables 1–4, we note that all
nonlinear systems of the form (2) admitting an MAI generated by the infinitesimal operator
(4), (5) with qk(t) = 0, k = 1, 2 coincide with the following systems previously found in [1]:
1, 2, 4 (with Y = U∂U −V ∂V −2β0t (U∂U +V ∂V ), 5, 6, 7 (with β10β20 �= 0), 8, 9 (with β0 = 0
and the operator exp(βt)U∂U instead of the Y) in table 1; 1, 2 (with γ �= 1), 3 (with α1 �= 0 or
β1 �= β2), 5, 7, 8 (with γ �= 0), 9, 11, 13, 16 in table 3; 1, 2, 7, 8 (taking into account remark 3),
9, 11 in table 4; 1, 3, 6–8 in table 5; 10 (taking into account remark 4 for α �= 0; 1) and 19 in
table 6. In those cases one need only set λ1 = λ2 = 1.
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Table 3. Case (ii) q1(t) = P 1(t, x) = 0, q2(t) �= 0.

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

1 exp
(−γ0

V
U

)
Uf (ω) ω = U exp

(−γ V
U

)
AE(1.n), D1

γ γ0
= D00 +

exp
(−γ0

V
U

)
(Vf (ω) + Ug(ω)) γ0 �= 0 γU∂U + γV ∂V + 2

γ0
U∂V

2 Uf (ω) ω = U exp
(−γ V

U

)
AE(1.n),

Vf (ω) + Ug(ω) Q1
γ = γU∂U + γV ∂V + U∂V

3 Uf (ω) + αγV ω = U exp
(−γ V

U

)
AE(1.n),

Vf (ω) + Ug(ω) + α �= 0 Q1
γα = exp(αt)Q1

γ

αV
(
1 + γ V

U

)
4 0 AE(1.n), Q1

0
Ug(U) X∞

0 = P0(t, x)∂V

D01 = D00 + 2V ∂V

5 Uf (U) AE(1.n), Q1
0 = U∂V

Vf (U) I = V ∂V

6 Uf (U) AE(1.n), Q1
0 = U∂V

βU + Vf (U) β �= 0 R1
βt = βtU∂V − V ∂V

7 βU β �= 0 AE(1.n), Q1
0

βV + Ug(U) X∞
β = Pβ(t, x)∂V

8 β1U AE(1.n),Q1
0 = exp(αt)U∂V

(β1 + α)V + Ug(U) α �= 0 X∞
β with β = β1 + α

9 Uf (U) AE(1.n),Q1
0

βU + αV + Vf (U) αβ �= 0 R1
βt = exp(αt)(βtU∂V − V ∂V )

10 β1 AE(1.n), X∞
β , β = β2

β2V + Ug(U) β1 �= 0 Q1
βt = exp(β2t)(U − β1t)∂V

11 β10U + β1V + β0U log U γ �= 0 AE(1.n),

β20V + β21U + β1
V 2

U
+ β0 �= 0 or Y 1

k = rk(t)Q + qk(t)U∂V

(β0V + γU) log U β1 �= 0

12 β1U
α+1 exp

(−αγ V
U

)
+ β10U αγ �= 0 AE(1.n), Q1

γ

(β2U + β1V )Uα exp
(−αγ V

U

)
+ D1

1 = D00 + 2
αγ

U∂V −
β10V + β10

γ
U 2β10αtQ1

γ

13 β1U
α+1 β1β2α �= 0 AE(1.n), Q1

0

β1V Uα + β2U
α0 + β20U α0 − α �= 0 D1

2 = D00 − 2
α
(U∂U +

α0 − 1 �= 0 (α0 − α)V ∂V ) + 2β20
α0−1

α
tU∂V

14 β1U
α+1 β1 �= 0 AE(1.n), Q1

0
β1V Uα + β20U α(α − 1) �= 0 D1

2 with α0 = α,R1
βt with β = β20

15 β1U
α+1 β1β2 �= 0 AE(1.n), Q1

0

β1V Uα + β2U log U + β20U α �= 0 D1
3 = D00 − 2

α
(U∂U +

(1 − α)V ∂V ) + 2β2tU∂V

16 β1U
α+1 β1β20 �= 0 AE(1.n), X∞

0

Uα+1(β2 + β20 log U) α �= 0,−1 D1
γ γ0

at γ = − 2
α
, γ0 = − αβ1

β20

17 β1U β1β20 �= 0 AE(1.n), Q1
0

β1V + β20U
α + β21U α �= 0, 1, 2 X∞

β with β = β1

Q1
αt = U∂U + αV ∂V + β21(1 − α)tU∂V
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Table 3. (Continued.)

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

18 β1U β20(β2 − β1) �= 0 AE(1.n),Q1
0 with α = β2 − β1

β2V + β20U
α α �= 0, 1, 2 X∞

β with β = β2

β2 �= αβ1 Qα = U∂U + αV ∂V

19 β1U
2 β1 �= 0 AE(1.n),Q1

0, V ∂V

β1V U R1
βt + ∂V with β = β1

D03 = D00 − 2U∂U

20 0 β20 �= 0 AE(1.n),Q1
0

β20U
α α �= 0, 1, 2 X∞

0 ,D01,Qα

21 β1 β1β20 �= 0 AE(1.n),X∞
0

β20U
α + β21U α �= 0, 1, 2 Q1

βt = (U − β1t)∂V

D1
5 = D01 + 2Q1

αt − β1β21(1 − α)t2∂V

22 β10U γ �= 0 AE(1.n),X∞
β with β = β10

β10V + β21U + γU log U Q1
0,Q + γ tU∂V

D1
6 = D01 + 2β10tQ + γβ10t

2U∂V

23 β10U γ �= 0 AE(1.n),X∞
β with β = β20

β20V + β21U + γU log U β10 �= β20 Q1
0 with α = β20 − β10

Q1
γ with γ → β10−β20

γ

24 0 β20γ �= 0 AE(1.n),X∞
β with β = β20

β20V + β21U + γ log U Q1
0 with α = β20

β20U∂U − (β21U + γ )∂V

25 0 γ �= 0 AE(1.n),X∞
0 ,Q1

0
γ log U D01, U∂U + γ t∂V

26 β1 γβ1 �= 0 AE(1.n),X∞
0 ,Q1

βt

β21U + γ log U D1
7 = D00 + 2Q +

2β21tU∂V + (2γ t − β21β1t
2)∂V

Remark 3. We have found that case 9 in table 1 of [1] is also valid for β0 = 0 while case 8 in
table 4 of [4] admits the following generalization (see also [7]): the system

{
λ1Ut = �U + U(β1 + β10 log U + γ1 log V )

λ2Vt = �V + V (β2 + β20 log V + γ2 log U)
(49)

where the arbitrary real parameters βk, βk0, γk, k = 1, 2 satisfy λ2(β10 + γ1λ2/λ1) �=
λ1(β20 + γ2λ1/λ2) and λ1λ2 �= 0, is invariant with respect to the MAI {AE(1.n),X1,X2}.
Here the operators X1,X2 are given by Xk = rk(t)U∂U + qk(t)V ∂V , k = 1, 2, where the
functions rk(t), qk(t), k = 1, 2 form a fundamental system of solutions of the linear ODE
system

dr

dt
= β10r + γ1q

dq

dt
= β20q + γ2r. (50)

There are six different forms of solutions of (50), depending on the coefficients γk and βk0

(k = 1, 2) in the system (49).
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Table 4. Case (ii) q1(t) = 0, P 1(t, x) �= 0, q2(t) �= 0.

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

1 exp(−γ0U)f (ω) ω = αU2 + V AE(1.n), D1
αγ0

= D00 +

exp(−γ0U)(g(ω) − 2αUf (ω)) αγ0 �= 0 2
γ0

(∂U − 2αU∂V )

2 f (ω) ω = αU2 + V AE(1.n),
g(ω) − 2αUf (ω) α �= 0 R1

α = ∂U − 2αU∂V

3 f (ω) + γU ω = αU2 + V AE(1.n),
g(ω) − 2αUf (ω) + 2γV αγ �= 0 R1

γα = exp(γ t)R1
α

4 β1(αU2 + V )α0+0.5 − β10
α0+0.5 β1 �= 0 or β2 �= 0 AE(1.n), R1

α,D1
8 = D00 −

β2(αU2 + V )α0+1 − 2αU × α0 �= 0,−0.5 1
α0

(
U∂U + 2V ∂V + 2β10tR

1
α

)(
β1(αU2 + V )α0+0.5 − β10

α0+0.5

)
α �= 0

5 β1 + β10 log(αU2 + V ) β10 �= 0 or β2 �= 0 AE(1.n), R1
α,D1

8

β2

√
αU2 + V − 2αU× α �= 0

(β1 + β10 log(αU2 + V ))

6 β1

√
αU2 + V − β10 αβ1 �= 0 AE(1.n), R1

α

β2(αU2 + V ) − 2αU × U∂U + 2V ∂V + β10tR
1
α

×(β1

√
αU2 + V − β10)

7 β1(αU2 + V ) − β10 αβ1β2 �= 0 AE(1.n), R1
α

β2(αU2 + V ) − 2αU × exp(β2t)
(
β1R

1
α + β2∂V

)
(β1(αU2 + V ) − β10)

8 β1(αU2 + V ) αβ1 �= 0 AE(1.n), R1
α

−2αβ1U(αU2 + V ) β1tR
1
α + ∂V

9 β1 exp(α0(αU2 + V )) + β10 β1 �= 0 or β2 �= 0 AE(1.n), R1
α

β2 exp(α0(αU2 + V )) − 2αU × αα0 �= 0 D1
9 = D00 − 2

α0
∂V + 2β10tR

1
α

(β1 exp(α0(αU2 + V )) + β10)

10 β1
√

αU2 + V + γU + β10 αβ1γ �= 0 AE(1.n),R1
γα

β2(αU2 + V ) − 2αU × γ (U∂U + 2V ∂V ) + β10R
1
α

(β1
√

αU2 + V + β10) + 2γV

11 β1(αU2 + V ) + γU + β10 αβ1γ �= 0 AE(1.n),R1
γα

β2αU2 + (β2 + 2γ )V − 2αU × β2 �= −γ exp((β2 + 2γ )t)
(

β1
β2+γ

R1
α + ∂V

)
(β1(αU2 + V ) + β10) β2 �= −2γ

12 β1(αU2 + V ) + γU + β10 αβ1γ �= 0 AE(1.n),R1
γα

γ (V − αU2) − 2αU × β1tR1
γα + exp(γ t)∂V

(β1(αU2 + V ) + β10)

13 β1(αU2 + V ) + γU + β10 αβ1γ �= 0 AE(1.n),R1
γα

−2αU(β1(αU2 + V ) + γU + β10) β1R
1
α − γ ∂V

14 β1U β1β20 �= 0 AE(1.n), Q1
0, X

∞
β with β = β1

β1V + β20U
2 + β21U Q1

αt with α = 2, exp(β1t) ×
(β1∂U + 2β20U∂V + β1β21t∂V )

15 β1U β20 �= 0 AE(1.n),Q1
0 with α = β2 − β1

X∞
β with β = β2

β2V + β20U
2 β2 �= β1 Qα with α = 2

β2 �= 2β1 exp(β1t)
(
∂U + 2β20

2β1−β2
U∂V

)
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Table 4. (Continued.)

Sl no Nonlinearities (F,G) Restrictions Basic operators of MAI

16 β1U β20β1 �= 0 AE(1.n),Q1
0 with α = β1

2β1V + β20U
2 Qα with α = 2

exp(β1t)(β1∂U + 2β1β20tU∂V )

D1
4 with α = 2

X∞
β with β = 2β1

17 0 β20 �= 0 AE(1.n), Q1
0, X∞

0
β20U

2 Qα with α = 2,D01

∂U + 2β20tU∂V

18 0 β2β20 �= 0 AE(1.n),Q1
0 with α = β2

β2V + β20U
2 X∞

β with β = β2, U∂U + 2V ∂V

R1
α with α = β20

β2

19 β1 β1β20 �= 0 AE(1.n), Q1
βt , X∞

0

β20U
2 D04 = D00 + 2U∂U + 6V ∂V

∂U + 2β20t
(
U − β1

2 t
)

∂V

U∂U + 2V ∂V − β1β20t
2
(
U − β1

3 t
)

∂V − β1t∂U

20 β1 β1β2β20 �= 0 AE(1.n),Q1
βt = exp(β2t)Q

1
βt

β2V + β20U
2 X∞

β with β = β2

β2∂U − 2β20

(
U + β1

β2

)
∂V

21 β1 β1 − β2 �= 0 AE(1.n),Q1
βt

β2V + β20 exp U β2 �= 0 X∞
β with β = β2

∂U + V ∂V

22 0 β20 �= 0 AE(1.n), Q1
0, X∞

0
β20 exp U D01, ∂U + V ∂V

23 β1 β1β20 �= 0 AE(1.n), Q1
βt , X∞

0

β21U + β20 exp U ∂U + V ∂V + β21t
(

1 + β1
2 t − U

)
∂V

24 β1 exp U β1α �= 0 AE(1.n), X∞
0

(β2 − 2αβ1U) exp U D1
αγ0

with γ0 = −1

Remark 4. It was found that case 10 in table 6 of [1] admits a generalization by setting
F = β1 log V , G = β2V

α [8], where the constants β1β2 �= 0 and α �= 1. Simultaneously the
operator of scale transformations takes the form

Dβ = 2tPt + xaPa + 2

(
U∂U +

1

1 − α
V ∂V

)
+

2β1t

λ1(1 − α)
∂U .

Moreover, we have found that case 13 in table 6 of [1] admits a generalization by setting
F = 0, G = g(U), where g(U) is an arbitrary function.

It is worth commenting on the systems and Lie algebras listed in table 1. One can note
that when λ1 = λ2 no new representations of the Galilei algebra AG(1.n) and the pseudo-
Galilean algebra AG(1.n) are admitted by system (1). However, there are new extensions of
these algebras that system (1) with λ1 �= λ2, λ1λ2 �= 0 does not admit. Case 1 (see table 1)
represents an RD system that is invariant under the generalized Galilei algebra AG2(1.n) with
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a new representation, in that it contains the projective operator 
 which cannot be reduced to
standard form (cf case 3, table 1 of [1]). Note that this RD system and its MAI were found in
[6] for the first time.

Case 2 is a system admitting an absolutely new algebra AG0
2(1.n) = {

AG1(1.n), Y 1
βt

}
.

This algebra and AG2(1.n) have the same dimensionality but are to be regarded as distinct
algebras because the AG0

2(1.n) algebra contains no projective operator 
.
The systems listed in cases 3, 4, 12 and 13 are invariant under the algebras

{
AG(1.n), Y 1

βt

}
,{

AG(1.n),Q1
α0

}
, {AG(1.n), Y 12} and

{
AG(1.n),Q12

γ2

}
, respectively. These algebras are new

representations of those listed in cases 4 and 5, table 1 of [1]. Similarly, cases 5–7 represent
systems that are invariant under Lie algebras which are new representations of the AG(1.n)

algebra extensions listed in cases 7–9, respectively, of table 1 of [1].
Cases 8 and 9 are systems with absolutely new algebras of Lie symmetries, in that they

are extensions of AG(1.n) by two operators. In other words, they represent pseudo-Galilean
analogues of AG2(1.n) and AG0

2(1.n).
Cases 10 and 11 are systems admitting the extended Galilei algebra AG1(1.n) with two

new representations of the operator of scale transformations.
Finally, cases 14–16 are systems that are invariant under Lie algebras which are new

representations of those listed in cases 7–9, respectively, of table 1 of [1].
The nonlinearity V 2/U occurs in a number of the above cases, so it worth noting an

(albeit rather contrived) application of such an expression. We focus for definiteness on case 1
of table 1, though others can be derived in a similar framework. Consider a surface on which
the proportion of unbound reactions sites, to which a diffusible chemical u can bind reversibly,
is θ . A second diffusible chemical v acts as a catalyst in the reaction

a + v → u + v

where the concentration A of a further chemical a (with similar notation for other species) is
held fixed, while v can undergo a reaction of the form

2v → b

at the above-mentioned reactions sites. A simple mathematical model for such a process reads


θt = k1(1 − θ) − k2θU

Ut = �U + k1(1 − θ) − k2θU + k3AV

Vt = �V − k4θV 2
(51)

where the coefficients k1, . . . , k4 are positive constants.
If k1 and k2 are sufficiently large then the quasi-steady approximation θ = k1/(k1 + k2U)

holds and if in addition U � θ , the system (51) reduces to{
Ut = �U + k3AV

Vt = �V − k1k4
k1+k2U

V 2.
(52)

Evidently system (52) is reduced to case 1 in table 1 by the local substitution k1 +
k2U → U .

Not surprisingly, a number of the systems are more conveniently expressed in terms
of the complex quantity 
 = U + iV (this is a special feature of dealing with a pair of
equations, (2)), so that, for example, table 2, case 5 takes the form of the complex equation


t = �
 + (β1 − iβ2)|
|2α0 exp(−γα0 arg 
)
 − β20(γ − i)
. (53)

Such equations with γ = 0 are very familiar in the literature (see the next section for details)
and are of interest for their blow-up properties, for example. Other nonlinearities arising in
the tables as special from the Lie symmetry point of view are also of interest for other reasons,
but we shall not labour the point here.
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3. Lie ansätze and solutions of the λ − ω RD system (3)

Consider the λ − ω RD system (3) in (1+1) dimensions, i.e.{
Ut = Uxx + ρα0(β1U − β2V ) + β10U − β20V

Vt = Vxx + ρα0(β2U + β1V ) + β20U + β10V
(54)

where α0β1 �= 0 or α0β2 �= 0. In a widely used notation (see, e.g. [2], chapter 12) this
corresponds to λ(ρ) = β1ρ

α0 +β10, ω(ρ) = β2ρ
α0 +β20, ρ

2 = U 2 +V 2. The system (54) with
α0 = 2 has been extensively studied (see [2] and papers cited therein) since it is a plausible
model for certain biochemical reactions. Here we apply the algebraic-theoretical approach to
the investigation of (54).

It follows from theorem 1 and remark 2 that there are three types of Lie algebra that can
be admitted by this RD system. The relevant basic operators are (i) Pt = ∂t , Px = ∂x,Q

12
0 =

U∂V − V ∂U and Dα0 = 2t∂t + x∂x − 2
α0

(U∂U + V ∂V ), if β10 = β20 = 0 (see table 2, 4 with

γ = 0); (ii) Pt, Px,Q
12
0 ,D12

α0
= Dα0 − 2β20tQ

12
0 , if β10 = 0, β20 �= 0 (see table 2, 5 with

γ = 0); (iii) Pt , Px,Q
12
0 , if β10 �= 0 (see table 2, 2).

We aim to construct the Lie ansätze and seek exact solutions in each of these cases. For
such a purpose it is convenient to change the variables (U, V ) to the polar variables (ρ,W)

defined by

U = ρ cos W V = ρ sin W. (55)

Substituting (55) into (54) leads to the system{
ρt = ρxx − ρW 2

x + β10ρ + β1ρ
α0+1

Wt = Wxx + 2ρ−1ρxWx + β20 + β2ρ
α0 .

(56)

Remark 5. Using the substitution W → W +β20t , one can eliminate β20 from (56). However,
we prefer to keep β20 �= 0 so the results can be applied more directly (the nonlinearity
ω(ρ) = β2ρ

α0 + β20 is more widely applicable than that with β20 = 0).

It is easily shown that the operators listed above have the form

Pt , Px Q12
0 = ∂W D12

α0
= Dα0 − 2β20t∂W (57)

in polar variables, where Dα0 = 2t∂t + x∂x − 2
α0

ρ∂ρ . According to the usual procedure, to find
the similarity reductions it is necessary to solve the Lagrange system

dt

ξ0(t, x)
= dx

ξ1(t, x)
= dρ

η1(t, x)ρ
= dW

η2(t, x)
(58)

where ξ0, ξ1, η1, η2 are known coefficients of the infinitesimal operator X, which is given by
a linear combination of the relevant operators listed in (57).

In the general case (iii), a full set of non-equivalent Lie ansätze can be constucted by
solving (58) for the operators

X1 = Px + γ ∂W X2 = Pt + vPx + γ ∂W X3 = ∂W γ, v ∈ R. (59)

In the first two cases there is the additional Lie ansatz generated by operators

X0
4 = Dα0 + γ ∂W (60)

and

X4 = D12
α0

+ γ ∂W (61)

respectively.
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Consider the algebra X1 which generates the ansatz

ρ = ϕ(t) W = ψ(t) + γ x. (62)

Using (62), we can reduce system (54) to a system of ODEs{
ϕt = (β10 − γ 2)ϕ + β1ϕ

α0+1

ψt = β20 + β2ϕ
α0

(63)

for the functions ϕ(t) and ψ(t). This system can be integrated and its general solution has the
form 


ϕ(t) =

[
γ 2−β10

β1+c0 exp[(γ 2−β10)α0t]

]1/α0

c0 ∈ R

ψ(t) =
(
β20 + β2

β1
(γ 2 − β10)

)
t − β2

β1α0
ln|β1 + c0 exp[(γ 2 − β10)α0t]|.

(64)

So, substituting (64) into ansatz (62) and taking into account (55), we arrive at an exact solution
of the λ − ω system (54):



U(t, x) =
[

γ 2−β10

β1+c0 exp[(γ 2−β10)α0t]

] 1
α0

× cos
[
γ x + γ0t − β2

β1α0
ln |β1 + c0 exp[(γ 2 − β10)α0t]|

]
V (t, x) =

[
γ 2−β10

β1+c0 exp[(γ 2−β10)α0t]

] 1
α0

× sin
[
γ x + γ0t − β2

β1α0
ln|β1 + c0 exp[(γ 2 − β10)α0t]|

]
(65)

where c0, γ ∈ R, γ0 = β20 + β2

β1
(γ 2 − β10), γ

2 − β10 �= 0, β1 �= 0. In the case β1 = 0, the
solution


U(t, x) = c0 exp[(β10 − γ 2)t] cos
[
γ x + β20t + β2c

α0
0

α0(β10−γ 2)
exp[α0(β10 − γ 2)t]

]
V (t, x) = c0 exp[(β10 − γ 2)t] sin

[
γ x + β20t + β2c

α0
0

α0(β10−γ 2)
exp[α0(β10 − γ 2)t]

] (66)

is obtained. Finally, the case γ 2 − β10 = 0 leads to the solution


U(t, x) = [α0β1(t0 − t)]−
1

α0 cos
[√

β10x + β20t − β2

β1α0
ln|t0 − t|

]
V (t, x) = [α0β1(t0 − t)]−

1
α0 sin

[√
β10x + β20t − β2

β1α0
ln|t0 − t|

] (67)

where t0 ∈ R.
The algebra X2 = Pt + vPx + γ ∂W generates the ansatz

ρ = ϕ(z) W = ψ(z) + γ t z = x − vt. (68)

In this case the reduced ODE system for the functions ϕ(z) and ψ(z) has the form{
ϕzz − ϕψ2

z + vϕz + β10ϕ + β1ϕ
α0+1 = 0

ϕψzz + 2ϕzψz + vϕψz + (β20 − γ )ϕ + β2ϕ
α0+1 = 0.

(69)

The system (69) is not integrable for arbitrary coefficients v, βk, βk0, k = 1, 2. However, one
can obtain

ψz = c0ϕ
−2 c0 ∈ R (70)

from the second equation if γ = β20, β2 = v = 0. Substituting (70) into the first equation of
system (69), we obtain

x0 ± x =
∫

ϕ dϕ√
2β1

α0+2ϕα0+4 + c1ϕ2 − c2
0

≡ Iα0(ϕ) (71)
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if α0 �= −2, and

x0 ± x =
∫

ϕ dϕ√
2β1ϕ2 ln ϕ + c1ϕ2 − c2

0

≡ Iα0(ϕ)|α0=−2 (72)

if α0 = −2.
So, assuming the existence of an inverse function I−1

α0
to the Iα0 (see (71) and (72)) and

using (68) with γ = β20, v = 0 and (55), we arrive at an exact solution of the λ − ω system
(54) {

U = I−1
α0

(x0 ± x) cos(ψ(x) + β20t)

V = I−1
α0

(x0 ± x) sin(ψ(x) + β20t)
(73)

where

ψ(x) = c0

∫
dx[

I−1
α0

(x0 ± x)
]2 x0, c0 ∈ R.

It should be noted the special case ϕ = U0 = constant, ψ = constant leads to

U = U0 cos
(√

λ(U0)x + ω(U0)t
)

V = U0 sin
(√

λ(U0)x + ω(U0)t
)

(74)

as a solution of (54), where λ(U0) = β1U
α0
0 + β10, ω(U0) = β2U

α0
0 + β20. The periodic plane

wave solution (74) is valid for arbitrary functions λ and ω [2].
Consideration of the algebra generated by operator X3 does not lead to any invariant

solutions because solving the relevant Lagrange system we obtain only the empty statement
ρ = ρ(t, x) and not an ansatz involving W .

Consider the algebra generated by the operator X4; see (61). The relevant ansatz is

ρ = t−1/α0ϕ(z) W = ψ(z) + β20t + γ ln t z = x/
√

t (75)

which leads to the ODE system{
ϕzz − ϕψ2

z + z
2ϕz + 1

α0
ϕ + β1ϕ

α0+1 = 0

ϕψzz + 2ϕzψz + z
2ϕψz − γ ϕ + β2ϕ

α0+1 = 0.
(76)

Remark 6. In the case of the operator X0
4, given by (61), one obtains (75) and (76) with

β20 = 0, therefore it is a particular case of the case under consideration.

Unfortunately, the ODE system (76) is not integrable for arbitrary coefficients
γ, α0, βk, k = 1, 2 but a particular solution for γ = β2 = 0, β1 �= 0 can be found, namely

ϕ =
[
−2(2 + α0)

β1α
2
0z

2

] 1
α0

ψ = −β20t0 t0 ∈ R. (77)

Substituting (77) into the ansatz (75) we obtain as a solution of (54)


U =
[
− 2(2+α0)

β1α
2
0x2

] 1
α0 cos(β20(t − t0))

V =
[
− 2(2+α0)

β1α
2
0x2

] 1
α0 sin(β20(t − t0)).

(78)

Finally, we note that the following formula for the generation of new solutions for β10 = 0{
ρnew = ε2/α0ρ0(ε2(t − t0), ε(x − x0))

Wnew = W 0(ε2(t − t0), ε(x − x0)) + β20(1 − ε2)t + c0
(79)

can be constructed by successive application of continuous transformations generated by the
operators (57). Here (ρ0(t, x),W 0(t, x)) is an arbitrary solution of (56) with β10 = 0 and
ε �= 0, t0, x0 and c0 are arbitrary parameters.
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4. Conclusions

The theorems outlined in [1] and above give a complete description of Lie symmetries (i.e. a
full group classification) of nonlinear multidimensional RD systems of the form (1). It has been
established that there are three types of systems of the form (1) leading to essentially different
Lie symmetries, namely: (a) λ1 �= λ2, λ1λ2 �= 0; (b) λ1 �= 0, λ2 = 0; (c) λ1 = λ2 �= 0.

Sets of local substitutions (namely (19) in [1], (21) in [1] and (7) above) have been found
that reduce any other system with a non-trivial Lie symmetry to the corresponding system
listed in tables 1–6 of [1] and tables 1–4 above.

In contrast to the scalar case, providing a complete description of local substitutions that
reduce a given system of the form (1) to its most simplified (canonical) form is a very difficult
problem, which we shall treat elsewhere. Here we note only that the sets of substitutions listed
above and in [1] are simple in structure and very useful in simplifying several subclasses of
systems of the form (1). For example, in each of the systems{

Ut = �U

Vt = �V + g(U) + β12U
(80)

{
Ut = �U + Uf (V ) + β12U

Vt = �V + g(V )
(81)

and {
Ut = �U + β1U β1 �= β2

Vt = �V + β2V + g(U) + β12U
(82)

containing arbitrary smooth functions f and g, we can set β12 = 0 by the substitutions{
U → U

V → V + β21tU
(83)

{
U → U exp(β21t)

V → V
(84)

and {
U → U

V → V + β21

β1−β2
U

(85)

respectively. Substitutions (83)–(85) are particular cases of (7).
To give an example of a very non-trivial local substitution (not belonging to the classes

mentioned so far), let us consider the system arising in case 19, table 4. We have found the
substitution {

U → U + β1t

V → V + β1β20t
2U + 1

3β2
1β20t

3 (86)

that reduces the system to one with β1 = 0. In other words, case 19, table 4 is reducible to
case 17, table 4 using (86). Another new local substitution follows from remark 5.

Having now a complete description of Lie symmetries, we have established that several
RD systems arising in various applications admit non-trivial symmetries. Two of them, a
limiting case (7) in [1] of a model used to describe a biological pattern arising in hydra and the
λ−ω system (54) have been considered in detail. All non-equivalent Lie ansätze, formulae for
mapping between solutions and examples of non-trivial exact solutions have been constructed
and some of their properties investigated.
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It seems worthwhile to compare our results with those obtained in recently published
paper [7] where Lie symmetries of reaction–diffusion systems with cross-diffusion{

Ut = a11�U + a12�V + F(U, V )

Vt = a21�U + a22�V + G(U,V )
(87)

are described (here aij ∈ R, i = 1, 2j = 1, 2).
As we noted in [1], our method of Lie symmetry classification is based on the classical

Lie scheme and on finding and then making essential use of the sets of local substitutions that
reduce any system with a non-trivial Lie symmetry to one given in the relevant tables. On the
other hand, it is shown in [7] that the Lie scheme for the system (87) admits a formulation in
terms of commutator algebras, so the authors adopt a different approach, though, as explicitly
noted in [7], these substitutions were not used systematically.

The first (a) and third (c) (see [1], p 270) types of system (1) are evidently particular cases
of (87) with a12 = a21 = 0. However, the second type (b) (see [1], p 270) cannot be obtained
from (87).

In the case (a), the authors of [7] have compared their results with those obtained in [1].
However, account was not taken of table 6 in [1] so their comments by way of comparison are
valid only in a particular case (that noted in remark 3 above). Although tables II–IV in [7],
representing the main results, are somewhat cumbersome (the nonlinearities and the relevant
Lie symmetries can be essentially simplified) and contain misprints (see also (i)–(iii) below),
we have attempted to compare the results in the case (c) too, i.e. a11 = a22 = 1, a12 = a21 = 0
in the system (87). We have established the following conclusions with regard to this special
case.

(i) All nonlinearities listed in tables II–IV [7] can be found either in tables 1–4 or in
remarks 2 and 3. It should be stressed that the sets of local substitutions (19) in [1],
(21) in [1] and (7) above have to be exploited in showing this.

(ii) Several additional Lie symmetry operators are missing in tables III and IV of [7]. Indeed,
comparing the last subcase of case 4 in table III of [7] with the relevant case, 20 (see
table 3 above), one observes the omission of the analogue of the operator Qα . Similarly,
analogues of the operators Q + γ tU∂V (see case 22 with β10 = 0 in table 3), R1

α (see case
4 in table 4) and ∂U + V ∂V (see case 22 in table 4) are missing in table III of [7] (see the
second subcase of case 5, case 9, and the last subcase of case 7, respectively). Analogues
of the operator Q1

0 (see cases 15 and 18 in table 3) are also missing in table IV of [7] (see
the last two subcases and the first two subcases of case 2).

(iii) There are several types of nonlinearities leading to non-trivial Lie symmetries in addition
to those in [7]. Case 3 from table 4 needs to be included into table II of [7]. Note that the
relevant system contains two arbitrary functions. Similarly, cases 1 and 2 from table 1,
cases 19, 21 and 26 from table 3 and cases 5, 9, 16, 17, 19 and 24 from table 4 need to
be added to table III of [7] as new cases. One can also find relevant cases in tables 1–4
which are absent in table IV of [7] (for example, cases 6–8 and 10–14 from tables 4).

It should be stressed that a complete description of Lie symmetries of a nonlinear PDE
system containing arbitrary functions of two or more dependent variables is a quite difficult
task. The pioneering works were published only a few years ago. To our knowledge the first
one is the paper [9], where the authors have solved this problem in the case of a nonlinear
system containing a two-dimensional PDE and an ODE, while the paper [1] is the first involving
nonlinear systems of multidimensional PDEs.

Finally, we would like to discuss briefly the next steps in a Lie symmetry description of
nonlinear multidimensional systems containing arbitrary functions. In the case λ1 = λ2 = 0
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the reaction–diffusion system (1) degenerates into an elliptic system. The complete
description of Lie symmetries for the corresponding two-dimensional elliptic system (i.e.
U = U(x1, x2), V = V (x1, x2)) was performed in [10] and work is in progress for the higher
dimensional case. Similarly, work is in progress for the case of the variable diffusivities D1

and D2, i.e. for reaction–diffusion systems of the form{
Ut = (

D1(U, V )Uxa

)
xa

+ F(U, V )

Vt = (
D2(U, V )Vxa

)
xa

+ G(U,V )

where summation is assumed from 1 to n over the repeated indices a.
It also seems reasonable to seek a complete Lie symmetry description of nonlinear

reaction–diffusion systems containing three or more equations for unknown functions
U1(t, x), U2(t, x), . . . , Um(t, x),m � 3. Our experience accumulated in the cases m = 1 [11]
and m = 2 [1] suggests that this is an extremely difficult problem which will be solved only by
the development of a special computer algebra package and its subsequent application, together
with a relevant modification of the classical Lie scheme. Some preliminary investigations
indicate that about 103 non-equivalent systems with non-trivial Lie symmetries arise in the
case m = 3.
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